Расчет скорости газа в трубопроводе по расходу
Определение пропускной способности трубопроводов ГРС
Б.К. Ковалев, заместитель директора по НИОКР
В последнее время все чаще приходится сталкиваться с примерами, когда оформление заказов на промышленное газовое оборудование ведут менеджеры, не имеющие достаточного опыта и технических знаний в отношении предмета закупок. Иногда результатом становится не вполне корректная заявка или принципиально неверный подбор заказываемого оборудования. Одной из наиболее распространенных ошибок является выбор номинальных сечений входного и выходного трубопроводов газораспределительной станции, сориентированный только на номинальные значения давления газа в трубопроводе без учета скорости потока газа. Цель данной статьи – выдача рекомендаций по определению пропускной способности трубопроводов ГРС, позволяющих при выборе типоразмера газораспределительной станции проводить предварительную оценку ее производительности для конкретных значений рабочих давлений и номинальных диаметров входного и выходного трубопроводов.
При выборе необходимых типоразмеров оборудования ГРС одним из основных критериев является производительность, которая в значительной мере зависит от пропускной способности входного и выходного трубопроводов.
Пропускная способность трубопроводов газораспределительной станции рассчитывается с учетом требований нормативных документов, ограничивающих максимально допустимую скорость потока газа в трубопроводе величиной 25м/с. В свою очередь, скорость потока газа зависит главным образом от давления газа и площади сечения трубопровода, а также от сжимаемости газа и его температуры.
Пропускную способность трубопровода можно рассчитать из классической формулы скорости движения газа в газопроводе (Справочник по проектированию магистральных газопроводов под редакцией А.К. Дерцакяна, 1977):
где W— скорость движения газа в газопроводе, м/сек;
Q — расход газа через данное сечение (при 20°С и 760 мм рт. ст.), м 3 /ч;
z — коэффициент сжимаемости (для идеального газа z = 1);
T = (273 + t °C) — температура газа, °К;
D — внутренний диаметр трубопровода, см;
p = (Pраб + 1,033) — абсолютное давление газа, кгс/см 2 (атм);
В системе СИ (1 кгс/см 2 = 0,098 МПа; 1 мм = 0,1 см) указанная формула примет следующий вид:
Читайте также: Варим профильную трубу 2 мм инвертором
где D — внутренний диаметр трубопровода, мм;
p = (Pраб + 0,1012) — абсолютное давление газа, МПа.
Отсюда следует, что пропускная способность трубопровода Qmax, соответствующая максимальной скорости потока газа w = 25м/сек, определяется по формуле:
Для предварительных расчетов можно принять z = 1; T = 20?С = 293 ?К и с достаточной степенью достоверности вести вычисления по упрощенной формуле:
Значения пропускной способности трубопроводов с наиболее распространенными в ГРС условными диаметрами при различных величинах давления газа приведены в таблице 1.
Калькулятор расчета скорости воды (газа, жидкости) в трубе (трубопроводе)
Предлагаем определить с помощью нашего калькулятора скорости воды в трубе или трубопроводе. Расчет может будет необходим в том случае, если Вы решили провести канализацию, отопительную или водопроводную систему своими руками в частном доме или квартире. Результат расчета поможет определиться в выборе диаметра трубы, его протяженности или количестве поворотов трубопровода.
Онлайн калькулятор скорости воды в трубе
Рассчитать все параметры перемещения жидкости в водопроводной системе, вопреки кажущейся простоте, представляет собой сложную задачу, поскольку на поток воды действует одновременно множество разноречивых факторов.
Зачем нужен расчет
Каковы основные направления использования воды в здании? Их несколько:
- Потребление для санитарных, а также бытовых нужд.
- Устройство отопления с водяным теплоносителем.
- Водопровод системы пожаротушения.
- Система канализации стоков.
Каждое направление имеет свои особенности и характеристики по условиям эксплуатации. При недостаточной мощности трубопроводной системы возможно критично резкое снижение давления, а вероятность получения слабой струйки из пожарного шланга испортит настроение любому.
Скорость течения стоков по системе канализации также имеет особое значение, поскольку малейший просчет в угле наклона отрицательно сказывается на работе такого водопровода и его долговечности. Недостаточный угол предполагает возможность остановки действия, а излишний приводит к ускоренному засорению канала.
Влияние различных факторов на работу водопроводной сети
На первый взгляд механизм простой – есть магистраль с определенным диаметром и чем большего оно размера, тем больше пройдет по ней жидкости при определенном давлении.
Безусловно, это действенные факторы, влияющие на расход воды и интенсивность ее перемещения по водопроводной сети. Но это только начало длинного перечня, поскольку кроме них существуют и другие воздействия:
- Длина трубы. По мере перемещения жидкость испытывает обратное направлению потока воздействие от трения о стенки трубы. Величина сопротивления такова, что пренебречь ею невозможно. Разумеется, на консоли через сливное отверстие скорость истечения зависит только от давления. Но вытекшую жидкость нужно заместить, а быстрота ввиду сопротивления недостаточна.
- Прямое воздействие на скорость течения жидкости оказывает диаметр внутреннего сечения трубопровода. Чем он меньше, тем более сильное сопротивление потоку оказывается, поскольку площадь контакта по отношению к объему протекающей воды увеличивается. То есть, между этими параметрами существует обратно пропорциональная зависимость.
- Материал, из которого изготовлена круглая труба, также оказывает существенное влияние. Внутренняя поверхность пластиковых изделий, изготовленных из сшитого полиэтилена, более гладкая, чем у аналогичных из металла. Она оказывает гораздо меньшее сопротивление потоку. Более того, при расчете скорости жидкости в трубопроводе, изготовленном из металла, следует понимать, что он справедлив только для новой системы. Такие системы очень быстро засоряются известковыми отложениями на внутренних стенках и продуктами окисления металла. Учесть такие воздействия невозможно, поскольку интенсивность их накопления во многом зависит от качества воды. Величина сопротивления в новой трубе и засоренной может возрастать до 200 раз.
- Скорость движения жидкости в трубопроводной системе во многом зависит от ее сложность. Каждый поворот, каждый фитинг – это потеря скорости, причем степень влияния не ограничивается статистической погрешностью, а снижает проходимость многократно.
Учитывая сказанное, очевидно, что достоверно определить основные параметры действия водопровода гидравлическим расчетом практически невозможно. Тем не менее, расчет скорости воды в трубопроводе необходим для определения первичных данных по его основным характеристикам и делать его нужно с использованием калькулятора, используя режим online.
Пропускная способность трубы
Редакция E-metall Опубликовано 2021-01-06
Нормальная работа всех инженерных систем здания прежде всего зависит от точности проектирования. Диаметр трубы влияет на ее пропускную способность – объем, который может пропустить сечение в единицу времени. Эту величину не принято вычислять и указывать в литрах для каждого вида продукции, так как при расчетах необходимо учитывать множество факторов.
Если диаметр трубопровода слишком мал, увеличивается внутреннее давление. Это создает аварийную ситуацию: возможны разрывы, протечки, появление засоров может полностью перекрыть поток.
Выбор труб большого сечения решает все эти проблемы, но напор может оказаться недостаточным. Такая система не в состоянии обеспечивать подачу воды или газа в нормальном объеме.
Методы определения пропускной способности
При расчетах инженеры руководствуются строительными нормами СНиП 2.04.01- и СП 402.1325800.2018. Разработку проектов производят с учетом точек разбора и нормативного потребления ресурсов. Как рассчитать пропускную способность трубы самостоятельно? Используют несколько вариантов, но все они дают приблизительный результат:
- С помощью таблиц;
- Опираясь на гидравлические формулы;
- Через онлайн-калькуляторы;
- С помощью программных продуктов.
На пропускную способность участка трубы оказывают влияние следующие факторы:
- Условный проход (Ду или DN);
- Материал изготовления;
- Количество колен, переходников, фитингов;
- Число точек разбора.
- Длина отрезка;
- Мощность насосного оборудования или уклон;
- Характеристики транспортируемой среды.
Условный проход – это средний внутренний диаметр. Понятие было введено для удобства подбора при стыковке элементов разных типоразмеров. Стальные изделия к концу эксплуатационного срока могут пропускать меньший объем воды из-за формирования отложений и ржавчины. От гладкости поверхности зависит сопротивление потоку, дополнительно оно создается в местах размещения арматуры. По правилам гидравлики пропускную способность рассчитывают в самом узком месте.
Расчет пропускной способности газовой трубы
Природный газ – особо опасная среда, поэтому проектирование разводок выполняют компании с лицензией, а работоспособность оборудования проверяет инспектор. Свойство газов сжиматься – усложняет вычисления. Кроме этого возможны утечки через микроскопические трещины и зазоры.
Пропускную способность газовой трубы определяют исходя из обеспечения бесперебойных поставок в часы максимального потребления и минимальными потерями напора между участками сети.
Кроме этого, характеристики строения должны соответствовать требованиям пожарной безопасности.
Упрощенная формула для бытовых газопроводов:
- Ду или DN – условный проход;
- Р – абсолютное давление газа, равное рабочему +0,10 мПа.
Для определения диаметра магистрального или распределительного газопровода применяют более сложную формулу:
- Z – коэффициент сжимаемости;
- t o – температура среды.
Например, в летнее время температура воздуха выше. Газ, находящийся в трубопроводе увеличивается в объеме. Если пропускная способность окажется ниже, возможны утечки и даже взрывы.
Таблица расчета газовой трубы
Pраб.(МПа) | Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20°С=293°К | |||||||
---|---|---|---|---|---|---|---|---|
DN 50 | DN 80 | DN 100 | DN 150 | DN 200 | DN 300 | DN 400 | DN 500 | |
0,3 | 670 | 1715 | 2680 | 6030 | 10720 | 24120 | 42880 | 67000 |
0,6 | 1170 | 3000 | 4690 | 10550 | 18760 | 42210 | 75040 | 117000 |
1,2 | 2175 | 5570 | 8710 | 19595 | 34840 | 78390 | 139360 | 217500 |
1,6 | 2845 | 7290 | 11390 | 25625 | 45560 | 102510 | 182240 | 284500 |
2,5 | 4355 | 11145 | 17420 | 39195 | 69680 | 156780 | 278720 | 435500 |
3,5 | 6030 | 15435 | 24120 | 54270 | 96480 | 217080 | 385920 | 603000 |
5,5 | 9380 | 24010 | 37520 | 84420 | 150080 | 337680 | 600320 | 938000 |
7,5 | 12730 | 32585 | 50920 | 114570 | 203680 | 458280 | 814720 | 1273000 |
10,0 | 16915 | 43305 | 67670 | 152255 | 270680 | 609030 | 108720 | 1691500 |
Расчет канализационной трубы
Системы канализации бывают напорные и безнапорные. В безнапорных вещества движутся за счет уклона элементов. В напорных сточные воды перемещаются благодаря действию насосных станций.
Стоки представляют собой разнородную массу. При малых скоростях твердые частицы выпадают на дно и образуют наносы. Для бесперебойной работы необходимо обеспечить скорость самоочищения, она определена для различных Ду.
Для вычисления размера сечения применяют формулу постоянного расхода жидкости:
- q=a*v ( q – расход, a – площадь сечения потока, v – скорость)
- v=C√R*i (С – коэффициент Шези, R – гидравлический радиус, i – уклон)
- R = a/x (a – площадь сечения потока, x – смоченный периметр)
Коэффициент Шези обозначает потери, связанные с трением с учетом длины. Гидравлический радиус тоже введен для вычисления сопротивления, ведь чем шире русло реки, тем большая энергия трения возникает при движении потока. Смоченный периметр – это часть длины окружности, которая соприкасается с жидкостью.
Применение формул чрезвычайно сложно, поэтому для определения Ду внутренних сетей зданий, ливневок, стоков применяют готовые таблицы или программное обеспечение.
Расчет расхода сточных вод
Диаметр, мм | Наполнение | Принимаемый (оптимальный уклон) | Скорость движения сточной воды в трубе, м/с | Расход, л/сек |
100 | 0,6 | 0,02 | 0,94 | 4,6 |
125 | 0,6 | 0,016 | 0,97 | 7,5 |
150 | 0,6 | 0,013 | 1,00 | 11,1 |
200 | 0,6 | 0,01 | 1,05 | 20,7 |
250 | 0,6 | 0,008 | 1,09 | 33,6 |
300 | 0,7 | 0,0067 | 1,18 | 62,1 |
350 | 0,7 | 0,0057 | 1,21 | 86,7 |
400 | 0,7 | 0,0050 | 1,23 | 115,9 |
450 | 0,7 | 0,0044 | 1,26 | 149,4 |
500 | 0,7 | 0,0040 | 1,28 | 187,9 |
600 | 0,7 | 0,0033 | 1,32 | 278,6 |
800 | 0,7 | 0,0025 | 1,38 | 520,0 |
1000 | 0,7 | 0,0020 | 1,43 | 842,0 |
1200 | 0,7 | 0,00176 | 1,48 | 1250,0 |
Расчет водопроводной трубы
Водопроводный сортамент применяют для ХВС, ГВС и отопления. Кроме этого, в каждом строении организуют большое число точек водоразбора, например, в среднестатистической квартире их минимум три.
К системе водоснабжения подключают:
- ванные,
- душевые кабины,
- санузлы,
- кухонные мойки и различные приборы (стиральные и посудомоечные машины, автополив в частных домах).
Иногда гидравлическая схема устроена так, что при работающем душе не хватает напора на кухне.
Принято считать, что скорость потока в водопроводе примерно равна 2 м/с, а за минуту из крана вытекает примерно 6 литров. Согласно СНиП 2.0401-85 допустимое давление холодной воды 0,3 – 6 бар, а горячей 0,3- 4,5 бар (под напором 1 бар вода может подняться на высоту 10 метров). Нормативы также обозначены в Постановлении Правительства № 354.
Владельцы частных домов вынуждены рассчитывать показатели индивидуально. Здесь необходимо учитывать заводские рекомендации для реле насосных установок. Величину 4 бар можно считать оптимальной для нужд жильцов и хозяйства, а фитинги — запорная арматура — способны служить достаточное время без срывов. Но такие технические возможности есть не у каждой системы.
Важным параметром является температура среды. Под действием тепла жидкости расширяются, следовательно, возрастает давление и трение. Дополнительное сопротивление создает каждый изгиб, фитинг, внутренняя поверхность по всей длине участка.
Гидравлический расчет включает в себя следующие характеристики:
- Условный проход;
- Нормативный расход;
- Номинальное и допустимое избыточное давление;
- Материал – падение напора на каждом участке;
- Количество фасонных деталей;
- Линейное и тепловое расширение;
- Длина.
Для вычисления зависимостей между расходом и давлением потока жидкости применяются уравнения Бернули (динамическое) и сохранения расхода (кинематическое).
Пропускная способность водопроводной трубы по диаметру наиболее точно определяется по таблице Шевелевых. Производители предусматривают расчетное давление для каждого размера Ду, проводят гидравлические испытания на соответствие. Существует таблица расчетов по теплоте и теплоносителю.
Пропускная способность трубы в зависимости от теплоносителя и отдаваемой теплоты
Диаметр трубы, мм | Пропускная способность | |||
---|---|---|---|---|
По теплоте | По теплоносителю | |||
Вода | Пар | Вода | Пар | |
Гкал/ч | т/ч | |||
15 | 0,011 | 0,005 | 0,182 | 0,009 |
25 | 0,039 | 0,018 | 0,650 | 0,033 |
38 | 0,11 | 0,05 | 1,82 | 0,091 |
50 | 0,24 | 0,11 | 4,00 | 0,20 |
75 | 0,72 | 0,33 | 12,0 | 0,60 |
100 | 1,51 | 0,69 | 25,0 | 1,25 |
125 | 2,70 | 1,24 | 45,0 | 2,25 |
150 | 4,36 | 2,00 | 72,8 | 3,64 |
200 | 9,23 | 4,24 | 154 | 7,70 |
250 | 16,6 | 7,60 | 276 | 13,8 |
300 | 26,6 | 12,2 | 444 | 22,2 |
350 | 40,3 | 18,5 | 672 | 33,6 |
400 | 56,5 | 26,0 | 940 | 47,0 |
450 | 68,3 | 36,0 | 1310 | 65,5 |
500 | 103 | 47,4 | 1730 | 86,5 |
600 | 167 | 76,5 | 2780 | 139 |
700 | 250 | 115 | 4160 | 208 |
800 | 354 | 162 | 5900 | 295 |
900 | 633 | 291 | 10500 | 525 |
1000 | 1020 | 470 | 17100 | 855 |
Пропускная способность трубы в зависимости от давления теплоносителя
Расход | Пропускная способность | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ду трубы | 15 мм | 20 мм | 25 мм | 32 мм | 40 мм | 50 мм | 65 мм | 80 мм | 100 мм |
Па/м — мбар/м | меньше 0,15 м/с | 0,15 м/с | 0,3 м/с | ||||||
90,0 — 0,900 | 173 | 403 | 745 | 1627 | 2488 | 4716 | 9612 | 14940 | 30240 |
92,5 — 0,925 | 176 | 407 | 756 | 1652 | 2524 | 4788 | 9756 | 15156 | 30672 |
95,0 — 0,950 | 176 | 414 | 767 | 1678 | 2560 | 4860 | 9900 | 15372 | 31104 |
97,5 — 0,975 | 180 | 421 | 778 | 1699 | 2596 | 4932 | 10044 | 15552 | 31500 |
100,0 — 1,000 | 184 | 425 | 788 | 1724 | 2632 | 5004 | 10152 | 15768 | 31932 |
120,0 — 1,200 | 202 | 472 | 871 | 1897 | 2898 | 5508 | 11196 | 17352 | 35100 |
140,0 — 1,400 | 220 | 511 | 943 | 2059 | 3143 | 5976 | 12132 | 18792 | 38160 |
160,0 — 1,600 | 234 | 547 | 1015 | 2210 | 3373 | 6408 | 12996 | 20160 | 40680 |
180,0 — 1,800 | 252 | 583 | 1080 | 2354 | 3589 | 6804 | 13824 | 21420 | 43200 |
200,0 — 2,000 | 266 | 619 | 1151 | 2486 | 3780 | 7200 | 14580 | 22644 | 45720 |
220,0 — 2,200 | 281 | 652 | 1202 | 2617 | 3996 | 7560 | 15336 | 23760 | 47880 |
240,0 — 2,400 | 288 | 680 | 1256 | 2740 | 4176 | 7920 | 16056 | 24876 | 50400 |
260,0 — 2,600 | 306 | 713 | 1310 | 2855 | 4356 | 8244 | 16740 | 25920 | 52200 |
280,0 — 2,800 | 317 | 742 | 1364 | 2970 | 4356 | 8566 | 17338 | 26928 | 54360 |
300,0 — 3,000 | 331 | 767 | 1415 | 3076 | 4680 | 8892 | 18000 | 27900 | 56160 |
Практически все водопроводы изготовлены из сталей (за исключением части внутренней разводки МКД). Для трубопроводов общего назначения с высокими механическими или корродирующими нагрузками используется чугун или нелегированные конструкционные стали.
Абсолютную шероховатость поверхностей обозначают знаком ∆ и вычисляют для разных сред после нескольких лет применения (отложения накипи, применение в насосно-компрессорных и системах отопления).
Так как необходим учет большого числа факторов, инженеры выполняют проектирование в специализированных программах. Применение формул требует знаний многих параметров. Это не всегда возможно для специалистов, поэтому в нормативных документах предусматриваются таблицы.
- Рубрики
- Запорная арматура
- Трубы
- Фитинги
- Монтаж запорной арматуры для газа: главные моменты
- Особенности и характеристики труб для теплого пола с кислородным барьером
- Проходной запорный вентиль: функционирование
- Прокладка коммуникаций с применением полипропиленовых фитингов Pro Aqua
- Что лучше: трубы PE-Xa или PE-RT
https://pipe-s.ru/raschet-skorosti-gaza-v-truboprovode-po-raskhodu/